Product Description
V Belt Pulley with ISO9001 (SPA, SPB, SPC, SPZ)
1. V-Pulley
Taper Bore
SPZ SPA CHINAMFG SPC
2. V-Pulley
Stock Bore
SPZ SPA CHINAMFG SPC
3. V-Pulley
Adjustable Speed
TB-1 TB-2 SB-1 SB-2
4. V-Pulley
Multi-Wedged
J L M
Â
50 – 1 x SPZ – 1008 rĂĽÂ 15 | Taper-v-belt pulley |
56 – 1 x SPZ – 1008 rĂĽÂ 15 | Taper-v-belt pulley |
60 – 1 x SPZ – 1008 bĂĽ | Taper-v-belt pulley |
63 – 1 x SPZ – 1108 bĂĽ | Taper-v-belt pulley |
67 – 1 x SPZ – 1108 bĂĽ | Taper-v-belt pulley |
71 – 1 x SPZ – 1108 bĂĽ | Taper-v-belt pulley |
75 – 1 x SPZ – 1108 bĂĽ | Taper-v-belt pulley |
80 – 1 x SPZ – 1210 bĂĽ | Taper-v-belt pulley |
85 – 1 x SPZ – 1210 bĂĽ | Taper-v-belt pulley |
90 – 1 x SPZ – 1210 bĂĽ | Taper-v-belt pulley |
95 – 1 x SPZ – 1210 bĂĽ | Taper-v-belt pulley |
100 – 1 x SPZ – 1210 bĂĽ | Taper-v-belt pulley |
106 – 1 x SPZ – 1610 bĂĽ | Taper-v-belt pulley |
112 – 1 x SPZ – 1610 bĂĽ | Taper-v-belt pulley |
118 – 1 x SPZ – 1610 bĂĽ | Taper-v-belt pulley |
125 – 1 x SPZ – 1610 bĂĽ | Taper-v-belt pulley |
132 – 1 x SPZ – 1610 bĂĽ | Taper-v-belt pulley |
140 – 1 x SPZ – 1610 bĂĽ | Taper-v-belt pulley |
150 – 1 x SPZ – 1610 bĂĽ | Taper-v-belt pulley |
160 – 1 x SPZ – 1610 bĂĽ | Taper-v-belt pulley |
170 – 1 x SPZ – 1610 bĂĽ | Taper-v-belt pulley |
180 – 1 x SPZ – 1610 bĂĽ | Taper-v-belt pulley |
190 – 1 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
200 – 1 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
224 – 1 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
250 – 1 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
280 – 1 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
315 – 1 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
355 – 1 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
400 – 1 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
500 – 1 x SPZ – 2517 | Taper-v-belt pulley |
50 – 2 x SPZ – 1008 rĂĽÂ 26 | Taper-v-belt pulley |
56 – 2 x SPZ – 1108 rĂĽÂ 26 | Taper-v-belt pulley |
60 – 2 x SPZ – 1108 rĂĽÂ 26 | Taper-v-belt pulley |
63 – 2 x SPZ – 1108 bĂĽ | Taper-v-belt pulley |
67 – 2 x SPZ – 1108 bĂĽ | Taper-v-belt pulley |
71 – 2 x SPZ – 1108 | Taper-v-belt pulley |
75 – 2 x SPZ – 1210 bĂĽ | Taper-v-belt pulley |
80 – 2 x SPZ – 1210 bĂĽ | Taper-v-belt pulley |
85 – 2 x SPZ – 1610 bĂĽ | Taper-v-belt pulley |
90 – 2 x SPZ – 1610 bĂĽ | Taper-v-belt pulley |
95 – 2 x SPZ – 1610 bĂĽ | Taper-v-belt pulley |
100 – 2 x SPZ – 1610 bĂĽ | Taper-v-belt pulley |
106 – 2 x SPZ – 1610 bĂĽ | Taper-v-belt pulley |
112 – 2 x SPZ – 1610 bĂĽ | Taper-v-belt pulley |
118 – 2 x SPZ – 1610 bĂĽ | Taper-v-belt pulley |
125 – 2 x SPZ – 1610 bĂĽ | Taper-v-belt pulley |
132 – 2 x SPZ – 1610 bĂĽ | Taper-v-belt pulley |
140 – 2 x SPZ – 1610 bĂĽ | Taper-v-belt pulley |
150 – 2 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
160 – 2 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
170 – 2 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
180 – 2 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
190 – 2 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
200 – 2 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
224 – 2 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
250 – 2 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
280 – 2 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
315 – 2 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
355 – 2 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
400 – 2 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
450 – 2 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
500 – 2 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
63 – 3 x SPZ – 1108 rĂĽÂ 17 | Taper-v-belt pulley |
67 – 3 x SPZ – 1108 rĂĽÂ 17 | Taper-v-belt pulley |
71 – 3 x SPZ – 1108 rĂĽÂ 17 | Taper-v-belt pulley |
75 – 3 x SPZ – 1210 rĂĽÂ 14 | Taper-v-belt pulley |
80 – 3 x SPZ – 1210 rĂĽÂ 14 | Taper-v-belt pulley |
85 – 3 x SPZ – 1610 rĂĽÂ 14 | Taper-v-belt pulley |
90 – 3 x SPZ – 1610 rĂĽÂ 14 | Taper-v-belt pulley |
95 – 3 x SPZ – 1610 rĂĽÂ 14 | Taper-v-belt pulley |
100 – 3 x SPZ – 1610 rĂĽÂ 14 | Taper-v-belt pulley |
106 – 3 x SPZ – 1610 rĂĽÂ 14 | Taper-v-belt pulley |
112 – 3 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
118 – 3 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
125 – 3 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
132 – 3 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
140 – 3 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
150 – 3 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
160 – 3 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
170 – 3 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
180 – 3 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
190 – 3 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
200 – 3 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
224 – 3 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
250 – 3 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
280 – 3 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
315 – 3 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
355 – 3 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
400 – 3 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
450 – 3 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
500 – 3 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
630 – 3 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
63 – 4 x SPZ – 1108 | Taper-v-belt pulley |
67 – 4 x SPZ – 1108 | Taper-v-belt pulley |
71 – 4 x SPZ – 1108 | Taper-v-belt pulley |
75 – 4 x SPZ – 1210 rĂĽÂ 26 | Taper-v-belt pulley |
80 – 4 x SPZ – 1210 rĂĽÂ 26 | Taper-v-belt pulley |
85 – 4 x SPZ – 1610 rĂĽÂ 26 | Taper-v-belt pulley |
90 – 4 x SPZ – 1610 rĂĽÂ 26 | Taper-v-belt pulley |
95 – 4 x SPZ – 1610 rĂĽÂ 26 | Taper-v-belt pulley |
100 – 4 x SPZ – 2012 rĂĽÂ 20 | Taper-v-belt pulley |
106 – 4 x SPZ – 2012 rĂĽÂ 20 | Taper-v-belt pulley |
112 – 4 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
118 – 4 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
125 – 4 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
132 – 4 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
140 – 4 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
150 – 4 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
160 – 4 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
170 – 4 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
180 – 4 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
190 – 4 x SPZ – 2517 | Taper-v-belt pulley |
200 – 4 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
224 – 4 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
250 – 4 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
280 – 4 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
315 – 4 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
355 – 4 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
400 – 4 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
450 – 4 x SPZ – 3571 bĂĽ | Taper-v-belt pulley |
500 – 4 x SPZ – 3571 bĂĽ | Taper-v-belt pulley |
630 – 4 x SPZ – 3030 bĂĽ | Taper-v-belt pulley |
800 – 4 x SPZ – 3030 e.b. | Taper-v-belt pulley |
85 – 5 x SPZ – 1610 rĂĽÂ 38 | Taper-v-belt pulley |
90 – 5 x SPZ – 1610 rĂĽÂ 38 | Taper-v-belt pulley |
95 – 5 x SPZ – 1610 rĂĽÂ 38 | Taper-v-belt pulley |
100 – 5 x SPZ – 2012 rĂĽÂ 32 | Taper-v-belt pulley |
106 – 5 x SPZ – 2012 rĂĽÂ 32 | Taper-v-belt pulley |
112 – 5 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
118 – 5 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
125 – 5 x SPZ – 2012 bĂĽ | Taper-v-belt pulley |
132 – 5 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
140 – 5 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
150 – 5 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
160 – 5 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
180 – 5 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
200 – 5 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
224 – 5 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
250 – 5 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
280 – 5 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
315 – 5 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
355 – 5 x SPZ – 2517 bĂĽ | Taper-v-belt pulley |
400 – 5 x SPZ – 3571 bĂĽ | Taper-v-belt pulley |
450 – 5 x SPZ – 3571 bĂĽ | Taper-v-belt pulley |
500 – 5 x SPZ – 3030 bĂĽ | Taper-v-belt pulley |
630 – 5 x SPZ – 3030 bĂĽ | Taper-v-belt pulley |
100 – 6 x SPZ – 2012 rĂĽÂ 44 | Taper-v-belt pulley |
106 – 6 x SPZ – 2012 rĂĽÂ 44 | Taper-v-belt pulley |
112 – 6 x SPZ – 2012 rĂĽÂ 44 | Taper-v-belt pulley |
118 – 6 x SPZ – 2517 rĂĽÂ 31 | Taper-v-belt pulley |
Â
Choose GOODLUCK(TAI)
1. Our company boasts a combination of research and development, production and sales with highly professional capabilities.
2. Our company produces the pulley with the following: Drive can mitigate impact load; Transmission smooth operation, low noise, low vibration; Transmission of simple structure, easy to adjust; Drive for the manufacture and installation precision of pulley, unlike meshing transmission strictly; It has the function of overload protection; Transmission center distance of 2 axis adjusting range is larger.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | ISO |
---|---|
Pulley Sizes: | All |
Manufacturing Process: | Casting |
Samples: |
US$ 0/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
What is the importance of proper pulley alignment and tensioning in belt pulley systems?
Proper pulley alignment and tensioning are of utmost importance in belt pulley systems. They directly impact the efficiency, reliability, and longevity of the system. Here’s a detailed explanation of the importance of proper pulley alignment and tensioning:
1. Power Transmission Efficiency: Proper pulley alignment and tensioning ensure efficient power transmission in belt pulley systems. Misaligned pulleys or incorrect belt tension can lead to slippage, which results in power loss. When the belts slip on the pulleys, the intended power transfer from the driving pulley to the driven pulley is compromised. By aligning the pulleys correctly and maintaining proper tension, the belts grip the pulleys securely, allowing for efficient power transmission and maximizing the system’s overall efficiency.
2. Prevents Belt Wear and Damage: Improper pulley alignment and tensioning can cause excessive belt wear and damage. Misaligned pulleys can cause the belts to run at an angle, resulting in uneven wear on the belt’s edges. This can lead to premature belt failure and the need for frequent belt replacements. Insufficient or excessive belt tension can also cause accelerated wear, as it puts additional strain on the belts. Proper alignment and tensioning help distribute the load evenly across the belts, minimizing wear and extending their lifespan.
3. Reduces Noise and Vibration: Correct pulley alignment and tensioning contribute to reducing noise and vibration in belt pulley systems. Misaligned pulleys can cause the belts to vibrate and generate noise during operation. Excessive belt tension can lead to increased vibration as well. These vibrations and noise not only affect the comfort of operators but can also impact the overall stability and performance of the system. Proper alignment and tensioning help minimize vibration and noise levels, creating a smoother and quieter operation.
4. Improves System Reliability: Proper pulley alignment and tensioning enhance the reliability of belt pulley systems. Misalignment or improper tension can lead to unexpected belt failures, system downtime, and costly repairs. When the belts slip or wear unevenly, it can cause disruptions in power transmission, resulting in reduced system performance or complete failure. Proper alignment and tensioning minimize the risk of belt-related issues, ensuring the system operates reliably and consistently.
5. Enhances Component Life: Correct pulley alignment and tensioning contribute to the longevity of system components. When the belts run smoothly and grip the pulleys properly, it reduces stress on the pulleys, bearings, and other mechanical parts. Misalignment or excessive tension can cause unnecessary strain on these components, leading to premature wear and failure. Proper alignment and tensioning help distribute the load evenly, minimizing stress and extending the life of system components.
6. Facilitates Easy Maintenance: Proper pulley alignment and tensioning make maintenance tasks easier. When pulleys are aligned correctly, it simplifies belt replacement, adjustment, or inspection procedures. Easy access to the belts and pulleys allows for efficient maintenance and reduces downtime during servicing. Additionally, proper tensioning ensures that belts can be adjusted or replaced without difficulty, improving overall serviceability of the system.
7. Optimizes System Performance: Ultimately, proper pulley alignment and tensioning optimize the performance of belt pulley systems. When the belts are aligned correctly and tensioned properly, the power transmission is efficient, wear is minimized, and vibrations are reduced. This results in reliable and consistent system operation, allowing the system to perform at its intended level of efficiency and productivity.
In summary, proper pulley alignment and tensioning are essential for efficient power transmission, prevention of belt wear and damage, reduction of noise and vibration, and improvement of system reliability. They enhance the lifespan of system components, facilitate maintenance tasks, and optimize the overall performance of belt pulley systems. By ensuring correct alignment and tension, operators can maximize the efficiency, reliability, and longevity of their belt pulley systems.
How do belt pulleys handle variations in load capacity and speed?
Belt pulleys are designed to handle variations in load capacity and speed by providing flexibility and adjustability in power transmission systems. They offer several mechanisms to accommodate changes in load and speed requirements. Here’s a detailed explanation of how belt pulleys handle variations in load capacity and speed:
1. Load Capacity: Belt pulleys can handle variations in load capacity through the selection of appropriate belt materials, pulley sizes, and belt tension. When the load increases, the belt tension can be adjusted to ensure proper power transmission. By increasing the tension, the grip between the belt and pulley increases, allowing for the transfer of higher loads. Belt materials with higher tensile strength and load-bearing capacity can also be chosen to handle heavier loads.
2. Speed Variation: Belt pulleys offer the ability to handle variations in speed through different mechanisms:
a. Fixed Speed Ratios: In applications where a fixed speed ratio is required, belt pulleys of specific sizes are selected to achieve the desired speed ratio. By choosing pulleys with different diameters or numbers of grooves, the speed of the driven pulley can be adjusted relative to the driving pulley, resulting in the desired speed variation.
b. Variable Speed Pulleys: Variable speed pulleys, also known as adjustable or variable pitch pulleys, enable continuous speed control. These pulleys feature movable pulley halves or arms that change the distance between the grooves. By adjusting the position of the movable pulley, the effective diameter of the pulley changes, altering the speed ratio. This allows for stepless speed variation within a defined range, providing flexibility in adjusting the speed of the driven system.
c. Step Pulleys: Step pulleys have multiple grooves of different diameters on the same pulley. By changing the belt position between these grooves, the speed ratio can be adjusted. Step pulleys provide a range of predetermined speeds by selecting the appropriate groove, allowing for different speed settings suitable for various operations.
d. Motor and Pulley Size Selection: By selecting motors and pulleys of different sizes or using different combinations of belt pulleys, the speed of the driven system can be adjusted. This is commonly seen in applications where multiple speed options are required, such as in drill presses or lathes, where a range of speeds is needed for different cutting operations.
Overall, belt pulleys handle variations in load capacity and speed by offering flexibility in belt tension, selecting appropriate pulley sizes and materials, utilizing variable speed pulleys, employing step pulleys, and choosing motor and pulley combinations to achieve the desired speed ratios. These mechanisms allow for efficient power transmission in a wide range of applications with varying load and speed requirements.
What are the key components and design features of a belt pulley?
A belt pulley consists of several key components and incorporates specific design features to ensure efficient power transmission and reliable operation. Understanding these components and design features is essential for proper selection and utilization of belt pulleys in mechanical systems. Here’s an overview of the key components and design features:
1. Pulley Body: The pulley body is the main structure of the belt pulley. It is typically a wheel-shaped component made of materials such as cast iron, steel, or aluminum. The pulley body provides the necessary strength and rigidity to support the belt and transmit rotational motion.
2. Grooved Rim: The rim of the pulley body features a series of grooves or channels. These grooves accommodate the belt or rope, ensuring a secure engagement between the pulley and the transmission element. The groove profile can vary depending on the type of belt or rope being used.
3. Hub or Bore: The hub or bore is the central opening in the pulley body. It allows the pulley to be mounted and secured onto the shaft. The hub may have keyways, splines, or other features to ensure proper alignment and torque transfer between the pulley and the shaft.
4. Flanges: Flanges are raised edges or rims located on the sides of the pulley body, adjacent to the grooved rim. Flanges help guide and prevent the belt from slipping off the pulley during operation. They provide additional support and stability to the belt, ensuring reliable power transmission.
5. Tensioning Mechanism: Some belt pulley designs incorporate a tensioning mechanism. This mechanism allows for adjusting the tension in the belt to ensure proper engagement and prevent slippage. Tensioning mechanisms can include adjustable pulley halves, movable pulley arms, or other mechanisms that enable easy tension adjustment.
6. Idler Pulleys: In certain belt-driven systems, idler pulleys are used in conjunction with the main driving and driven pulleys. Idler pulleys are additional pulleys that do not transmit power but help guide and redirect the belt. They maintain the appropriate tension in the belt, improve belt wrap around the pulleys, and assist in achieving the desired belt path.
7. Surface Finish: The surface finish of a belt pulley is important for reducing friction and wear between the pulley and the belt. Smooth and properly finished surfaces minimize belt slippage and improve power transmission efficiency. The surface finish can be achieved through machining, grinding, or other methods depending on the material and application requirements.
8. Balancing: Balancing is a critical aspect of belt pulley design, especially for high-speed applications. Proper balancing ensures that the pulley rotates smoothly without causing excessive vibrations or premature wear. Unbalanced pulleys can lead to reduced system performance, increased noise, and potential damage to the pulley or other components.
9. Material Selection: The choice of material for a belt pulley depends on factors such as the application requirements, load capacity, operating conditions, and cost considerations. Common materials used for pulleys include cast iron, steel, aluminum, and composite materials. Each material offers specific advantages in terms of strength, durability, corrosion resistance, and weight.
In summary, a belt pulley consists of components such as the pulley body, grooved rim, hub or bore, flanges, tensioning mechanisms, and may include idler pulleys. Design features like surface finish, balancing, and material selection are crucial for optimal performance and longevity of the pulley. Understanding these key components and design features allows for the appropriate selection, installation, and maintenance of belt pulleys in mechanical systems.
editor by CX
2024-03-27