Product Description

2571 Year High Precision Transmission Belt Timing Pulley

Synchronous belt pulley transmission is composed of an annular belt with equidistant teeth on the inner peripheral surface and a belt pulley with corresponding teeth. During operation, the belt teeth mesh with the tooth slots of the belt pulley to transmit motion and power. It is a new belt transmission that integrates the respective advantages of belt transmission, chain transmission and gear transmission.

Product Parameters

Product standard timing belt pulley & idler pulley
Customized OEM, drawings or samples customized
Teeth type Normal Torque Drive Type:MXL,XL,L,H,XH,XXH
High Torque Drive Type:S2M,S3M,S5M,S8M,HTD2M,HTD3M,HTD5M,HTD8M,P2M,P3M,P5M,P8M
High Precision Position Drive Type:2GT,3GT,5GT,8YU
Light Load Drive Type:T5,T10,T20
Heavy Load Drive Type:AT5,AT10,AT20
Basic shape Type A,Type B,Type D,Type E,Type F,Type K
Adaption Adapt to 1/4 inch,5/16 inch,1/2 inch, 3/8inch, 2/25inch, 1/5inch belt
surface treatment Natural color anodizing,Black anodizing,Hard anodizing,Ni-plating,Blackening
Material 6061(aluminum),S45C(45# steel),SUS304(Stainless steel)
Bore Pilot bore, Taper bore and Customized bore.
Tolerance Control Outer diameter ±0.005mm   Length dimension ±0.05mm
Standard DIN, ISO/GB, AGMA, JIS
Teeth Accuracy DIN Class 4, ISO/GB Classs 4, AGMA Class 13, JIS Class 0
Weight Max 15Tons
testing equipment projecting apparatus,salt spray test,durometer,and coating thickness tester,2D projector
producing  equipment CNC machine,automatic lathe machine,stamping machine,CNC milling machine,rolling machine,lasering,tag grinding machine etc.
Machining Process Gear Hobbing, Gear Milling, Gear Shaping, Gear Broaching,Gear Shaving, Gear Grinding and Gear Lapping
Application industry Robot industry,Medical industry,Making machine industry,Automation industry,3C industry equipment,Packaging industry,UAV industry,New energy industry.

Company Profile

Packaging & Shipping

FAQ

Main markets Southeast Asia, North America, Eastern Europe, Mid-East, West Europe
How to order *You send us drawing or sample
*We carry through project assessment
*We give you our design for your confirmation
*We make the sample and send it to you after you confirmed our design
*You confirm the sample then place an order and pay us 30% deposit
*We start producing
*When the goods is done,you pay us the balance after you confirmed pictures or tracking numbers
*Trade is done,thank you!

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: CE, ISO
Pulley Sizes: Type B
Manufacturing Process: Machining
Material: Aluminumtiming
Surface Treatment: Electroplating
Application: Chemical Industry, Grain Transport, Mining Transport, Power Plant, Printing
Samples:
US$ 15/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pulley

How does the design of a V pulley affect its performance?

The design of a V pulley plays a crucial role in determining its performance characteristics. Here’s an explanation of how different design aspects of a V pulley can affect its performance:

1. Groove Profile:

The groove profile of a V pulley is designed to match the shape of the V-belt used in the power transmission system. The angle and depth of the groove directly influence the grip between the pulley and the belt. An appropriate groove profile ensures a secure and efficient power transmission, minimizing belt slippage, and maximizing the transfer of torque.

2. Diameter:

The diameter of a V pulley affects both its speed ratio and torque transmission capacity. A larger pulley diameter results in higher belt speed and lower torque transmission, while a smaller diameter pulley provides lower speed and higher torque. The selection of the pulley diameter depends on the desired speed and torque requirements of the application.

3. Material:

The material used for constructing the V pulley impacts its durability, strength, and resistance to wear and corrosion. Common materials include cast iron, steel, aluminum, and plastic. The choice of material depends on factors such as the application environment, load capacity, and operating conditions. A robust and appropriate material selection ensures the pulley can withstand the demands of the application and maintain its performance over time.

4. Balance and Runout:

A well-balanced V pulley is essential to minimize vibration and ensure smooth operation. Imbalances can lead to increased wear on the pulley, belt, and bearings, reducing the overall efficiency and lifespan of the system. Similarly, excessive runout (eccentricity) in the pulley’s rotational movement can cause belt misalignment and increased friction. Proper design and manufacturing techniques are necessary to achieve optimal balance and runout in V pulleys.

5. Taper and Flange:

In some V pulley designs, a taper or flange is incorporated to improve belt tracking and prevent belt wandering or jumping off the pulley. The taper or flange helps guide the belt and maintain proper alignment, enhancing the overall performance and reliability of the power transmission system.

6. Hub Design:

The hub design of a V pulley determines its attachment method to the shaft. It can feature keyways, set screws, or other mechanisms to securely fasten the pulley in place. The hub design should ensure a tight and reliable connection to prevent pulley slippage and maintain accurate power transmission.

7. Surface Finish:

The surface finish of a V pulley can impact its friction characteristics. A smooth and properly finished surface reduces friction between the pulley and the belt, promoting efficient power transmission and minimizing heat generation. Additionally, surface treatments such as coatings or platings can improve the pulley’s resistance to corrosion and wear.

Each of these design factors contributes to the overall performance of a V pulley in terms of power transmission efficiency, belt grip, durability, and reliability. Manufacturers carefully consider these design aspects to ensure optimal performance and compatibility with specific applications and operating conditions.

pulley

Can V pulleys be integrated into conveyor systems for material handling?

Yes, V pulleys can be integrated into conveyor systems for material handling. Conveyor systems are widely used in various industries to transport materials efficiently and reliably. Here’s a detailed explanation of how V pulleys can be utilized in conveyor systems:

1. Belt Drive Mechanism:

V pulleys are commonly used as part of the belt drive mechanism in conveyor systems. The driving pulley is typically connected to a motor or an engine, while the driven pulley is connected to the conveyor belt. The rotation of the driving pulley causes the belt to move, enabling the transportation of materials along the conveyor.

2. Groove Profile:

V pulleys used in conveyor systems have a specific groove profile designed to match the shape of the V-belt used in the system. The groove angle, depth, and width are tailored to accommodate the corresponding V-belt dimensions. This ensures proper belt engagement and efficient power transmission, minimizing slippage and maximizing traction.

3. Belt Selection:

Various types of V-belts can be used in conveyor systems, depending on the specific requirements of the material handling application. Common V-belt types include classical V-belts, narrow V-belts, and cogged V-belts. The selection of the appropriate V-belt is based on factors such as load capacity, speed, environmental conditions, and the nature of the materials being conveyed.

4. Tensioning Mechanism:

V pulleys in conveyor systems are typically accompanied by a tensioning mechanism to maintain the proper tension in the belt. Tensioning devices such as idler pulleys or tensioners are used to adjust the tension and ensure optimal belt engagement with the pulleys. Proper tensioning is essential for efficient power transmission and to prevent belt slippage.

5. Pulley Diameter and Speed Ratio:

The diameter of the pulleys and the speed ratio between the driving and driven pulleys are critical considerations in conveyor system design. By selecting pulleys of different diameters, different speed ratios can be achieved, allowing for customization of the conveyor system’s speed and throughput. This flexibility enables the system to be tailored to the specific material handling requirements.

6. Belt Alignment and Tracking:

Proper alignment and tracking of the conveyor belt are essential for efficient operation and to prevent belt damage or premature wear. V pulleys are designed to facilitate belt alignment by providing a consistent and stable contact surface for the belt. Additionally, tracking devices such as aligning idlers or belt tracking systems can be incorporated to ensure the belt stays centered on the pulleys.

7. Durability and Maintenance:

V pulleys used in conveyor systems are typically made of durable materials such as steel or cast iron, which can withstand the demands of continuous operation and heavy loads. Regular maintenance, including inspection, lubrication, and occasional belt replacement, is necessary to ensure the long-term efficiency and reliability of the conveyor system.

Overall, V pulleys are an integral component of conveyor systems for material handling. Their design characteristics, combined with the use of appropriate V-belts and proper tensioning, facilitate efficient power transmission, reliable operation, and effective transport of materials in various industrial applications.

pulley

What are the primary components and design features of a V pulley?

A V pulley, also known as a V-belt pulley or sheave, consists of several primary components and design features that enable its functionality. Here’s an explanation of the primary components and design features of a V pulley:

1. Body:

The body of a V pulley is the main structural component. It is typically made of metal, such as cast iron or steel, to provide strength and durability. The body is designed to support the V-belt and transmit power from the driving source to the driven component. It may have a solid construction or be split into two halves for easy installation or replacement.

2. Groove:

The groove is a key design feature of a V pulley. It is a V-shaped channel or groove that runs along the outer circumference of the pulley. The groove is specifically designed to accommodate the V-belt with a corresponding trapezoidal cross-section. The V shape of the groove enhances the grip between the pulley and the belt, ensuring efficient power transmission and reducing the risk of slippage.

3. Diameter:

The diameter of a V pulley refers to the distance across its outer circumference. It plays a crucial role in determining the speed ratio and torque transmission of the power transmission system. By changing the diameter of the pulley, different speed ratios can be achieved between the driving source and the driven component. Larger pulley diameters generally result in higher belt speeds and lower torque, while smaller diameters lead to slower belt speeds and higher torque.

4. Number of Grooves:

V pulleys can have a single groove or multiple grooves, depending on the specific application. The number of grooves corresponds to the number of V-belts used in the power transmission system. Multiple grooves allow for the simultaneous power transmission to multiple driven components, such as in systems with multiple accessories or pulleys in automotive engines.

5. Tapered or Straight Design:

V pulleys can have a tapered or straight design, depending on the requirements of the application. Tapered pulleys are wider at one end and narrower at the other, allowing for easier belt installation and improved belt tracking. Straight pulleys have a consistent width along their entire circumference and are commonly used in applications where belt tracking is not a significant concern.

6. Surface Finish:

The surface finish of a V pulley is important for optimizing the performance and lifespan of the V-belt. The pulley’s surface should be smooth and free from any roughness or irregularities that could cause excessive belt wear or damage. Proper surface finish ensures proper belt contact, reduces friction, and enhances the overall efficiency of the power transmission system.

7. Mounting Mechanism:

V pulleys are mounted on shafts or bearings using various mounting mechanisms, such as set screws, bolts, or keyways. The mounting mechanism ensures secure and reliable attachment of the pulley to the rotating shaft, allowing for the transmission of rotational motion and torque.

By considering these primary components and design features, engineers can select and design V pulleys that are suitable for specific applications, ensuring efficient power transmission and reliable operation in mechanical systems.

China Custom 2022 Year High Precision Transmission Belt Timing Pulley   pulley attachments	China Custom 2022 Year High Precision Transmission Belt Timing Pulley   pulley attachments
editor by CX

2024-03-29