Product Description
MIC NO | OEM.NO | APPLICATION | YEAR | PHOTO |
TB34OP8801 | 201129CP CHEVROLET : 96184932 CHEVROLET : 96298799 CHEVROLET : 96435138 CHEVROLET : 96459042 DAEWOO : 96184932 DAEWOO : 96298799 DAEWOO : 96435138 DAEWOO : 96459042 OPEL : 134571 OPEL : 1340541 OPEL : 1340542 OPEL : 1340544 OPEL : 24412292 OPEL : 634571 OPEL : 9 0571 430 OPEL : 90448220 OPEL : 90505719 OPEL : 9 0571 129 SUZUKI : 9516085Z00 |
BUICK SKYLARK 2.4 CADILLAC BLS 2.0 T Flexpower CADILLAC BLS Wagon 2.0 T Flexpower CHEVROLET ALERO 2.4 16V CHEVROLET CAPTIVA (C100, C140) 2.4 CHEVROLET EPICA (KL1_) 2.0 CHEVROLET EVHangZhou 2.0 CHEVROLET LACETTI (J200) 1.8 CHEVROLET NUBIRA Estate 1.8 CHEVROLET NUBIRA Saloon 1.8 CHEVROLET REZZO MPV (U100) 2.0 CHEVROLET ZAFIRA (F75) 2.0 DAEWOO EVHangZhou (KLAL) 2.0 DAEWOO LEGANZA (KLAV) 2.0 16V DAEWOO NUBIRA (J100) 2.0 16V DAEWOO NUBIRA Saloon (J100) 2.0 16V DAEWOO NUBIRA Saloon (J200) 1.8 DAEWOO NUBIRA Wagon (J100) 1.6 16V DAEWOO NUBIRA Wagon (J200) 1.8 DAEWOO REZZO (U100) 2.0 LADA 110 (2110) 2.0 i (21106) LOTUS EUROPA S 2.0 Turbo OPEL ANTARA (L07) 2.4 OPEL ASTRA F (T92) 1.4 (F19, M19) OPEL ASTRA F (T92) 1.6 (F19, M19) OPEL ASTRA F (T92) 1.8 i (F19, M19) OPEL ASTRA F (T92) 2.0 i (F19, M19) OPEL ASTRA F (T92) 2.0 i 16V (F19, M19) OPEL ASTRA F CLASSIC Estate (T92) 1.6 i 16V (F35, M35) OPEL ASTRA F CLASSIC Hatchback (T92) 1.6 i 16V (F08, M08, F68, M68) OPEL ASTRA F CLASSIC Saloon (T92) 1.6 i 16V (F19, M19) OPEL ASTRA F Convertible (T92) 1.4 i 16V OPEL ASTRA F Convertible (T92) 1.6 i OPEL ASTRA F Convertible (T92) 1.8 i 16V OPEL ASTRA F Convertible (T92) 2.0 i OPEL ASTRA F Estate (T92) 1.4 (F35, M35) OPEL ASTRA F Estate (T92) 1.6 (F35, M35) OPEL ASTRA F Estate (T92) 1.8 i (F35, M35) OPEL ASTRA F Estate (T92) 2.0 i (F35, M35) OPEL ASTRA F Hatchback (T92) 1.4 (F08, M08, F68, M68) OPEL ASTRA F Hatchback (T92) 1.6 (F08, M08, F68, M68) OPEL ASTRA F Hatchback (T92) 1.8 i (F08, M08, F68, M68) OPEL ASTRA F Hatchback (T92) 2.0 GSI 16V (F08, M08, F68, M68) OPEL ASTRA F Van (T92) 1.6 i (F70) OPEL ASTRA G Convertible (T98) 2.0 16V Turbo (F67) OPEL ASTRA G Estate (T98) 2.0 16V (F35) OPEL ASTRA G Hatchback (T98) 2.0 16V (F08, F48) OPEL ASTRA G Saloon (T98) 2.0 16V (F69) OPEL ASTRA H (A04) 2.0 Turbo (L48) OPEL ASTRA H Estate (A04) 2.0 Turbo (L35) OPEL ASTRA H GTC (A04) 2.0 Turbo (L08) OPEL ASTRA H TwinTop (A04) 2.0 Turbo (L67) OPEL CALIBRA A (C89) 2.0 i (M07) OPEL COMBO (71_) 1.4 OPEL CORSA B (S93) 1.4 i (F08, F68, M68) OPEL CORSA B (S93) 1.6 GSI 16V (F08, F68, M68) OPEL CORSA B Box (S93) 1.4 i (F08, W5L) OPEL FRONTERA A (U92) 2.2 i (54MWL4) OPEL FRONTERA A Sport (U92) 2.0 i (52SUD2, 55SUD2) OPEL FRONTERA B (U99) 2.2 i (6B_ZC, 6B_VF, 6B_66, 6B_76) OPEL OMEGA B (V94) 2.0 (F69, M69, P69) OPEL OMEGA B (V94) 2.2 16V (F69, M69, P69) OPEL OMEGA B Estate (V94) 2.0 (F35, M35, P35) OPEL OMEGA B Estate (V94) 2.2 16V (F35, M35, P35) OPEL SINTRA (APV) 2.2 i 16V (OUN16, Y94) OPEL SPEEDSTER (E01) 2.0 Turbo (R97) OPEL TIGRA (S93) 1.4 16V (F07) OPEL TIGRA (S93) 1.6 16V (F07) OPEL VECTRA A (J89) 1.6 i (F19, M19) OPEL VECTRA A (J89) 1.8 i Cat (F19, M19) OPEL VECTRA A (J89) 2.0 i (F19, M19) OPEL VECTRA A Hatchback (J89) 1.6 i (F68, M68) OPEL VECTRA A Hatchback (J89) 1.8 i (F68, M68) OPEL VECTRA A Hatchback (J89) 2.0 i (F68, M68) OPEL VECTRA B (J96) 1.6 i (F19) OPEL VECTRA B (J96) 1.8 i 16V (F19) OPEL VECTRA B (J96) 2.0 i (F19) OPEL VECTRA B Estate (J96) 1.6 i (F35) OPEL VECTRA B Estate (J96) 1.8 i 16V (F35) OPEL VECTRA B Estate (J96) 2.0 i 16V (F35) OPEL VECTRA B Hatchback (J96) 1.6 i (F68) OPEL VECTRA B Hatchback (J96) 1.8 i 16V (F68) OPEL VECTRA B Hatchback (J96) 2.0 i 16V (F68) OPEL ZAFIRA / ZAFIRA FAMILY B (A05) 2.0 (M75) OPEL ZAFIRA A MPV (T98) 2.0 OPC (F75) |
1995-1999 2007- 2007- 1999-2004 2006- 2005-2006 2005- 2005- 2005-2009 2005-2009 2005- 2001-2012 2002- 2000-2004 1997- 1997- 2003- 2000- 2003- 2001-2004 1996-2000 2006- 2006-2011 1992-1998 1995-1998 1992-1998 1992-1998 1995-1998 1998-2005 1998-2002 1998-2002 1996-2001 1993-1996 1994-2001 1993-1994 1992-1998 1995-1998 1991-1998 1991-1994 1992-1998 1995-1998 1991-1998 1991-1998 1991-1998 2002-2005 1998-2004 1998-2005 1998-2005 2004-2571 2004-2571 2005-2571 2005-2571 1989-1996 1994-2001 1993-2000 1993-2000 1999-2000 1995-1998 1992-1998 1998-2004 1994-2000 1999-2003 1994-1999 1999-2003 1996-1999 2002-2006 1994-2000 1994-1998 1993-1995 1990-1995 1988-1992 1993-1995 1988-1990 1988-1990 1995-2002 2000-2002 1995-2002 1996-2000 1996-2000 1996-2000 1995-2003 1995-2000 1995-2000 2006-2571 2001-2005 |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online Technical Support |
---|---|
Warranty: | One year |
Car Make: | CHEVROLET |
Samples: |
US$ 15/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How does the design of a V pulley affect its performance?
The design of a V pulley plays a crucial role in determining its performance characteristics. Here’s an explanation of how different design aspects of a V pulley can affect its performance:
1. Groove Profile:
The groove profile of a V pulley is designed to match the shape of the V-belt used in the power transmission system. The angle and depth of the groove directly influence the grip between the pulley and the belt. An appropriate groove profile ensures a secure and efficient power transmission, minimizing belt slippage, and maximizing the transfer of torque.
2. Diameter:
The diameter of a V pulley affects both its speed ratio and torque transmission capacity. A larger pulley diameter results in higher belt speed and lower torque transmission, while a smaller diameter pulley provides lower speed and higher torque. The selection of the pulley diameter depends on the desired speed and torque requirements of the application.
3. Material:
The material used for constructing the V pulley impacts its durability, strength, and resistance to wear and corrosion. Common materials include cast iron, steel, aluminum, and plastic. The choice of material depends on factors such as the application environment, load capacity, and operating conditions. A robust and appropriate material selection ensures the pulley can withstand the demands of the application and maintain its performance over time.
4. Balance and Runout:
A well-balanced V pulley is essential to minimize vibration and ensure smooth operation. Imbalances can lead to increased wear on the pulley, belt, and bearings, reducing the overall efficiency and lifespan of the system. Similarly, excessive runout (eccentricity) in the pulley’s rotational movement can cause belt misalignment and increased friction. Proper design and manufacturing techniques are necessary to achieve optimal balance and runout in V pulleys.
5. Taper and Flange:
In some V pulley designs, a taper or flange is incorporated to improve belt tracking and prevent belt wandering or jumping off the pulley. The taper or flange helps guide the belt and maintain proper alignment, enhancing the overall performance and reliability of the power transmission system.
6. Hub Design:
The hub design of a V pulley determines its attachment method to the shaft. It can feature keyways, set screws, or other mechanisms to securely fasten the pulley in place. The hub design should ensure a tight and reliable connection to prevent pulley slippage and maintain accurate power transmission.
7. Surface Finish:
The surface finish of a V pulley can impact its friction characteristics. A smooth and properly finished surface reduces friction between the pulley and the belt, promoting efficient power transmission and minimizing heat generation. Additionally, surface treatments such as coatings or platings can improve the pulley’s resistance to corrosion and wear.
Each of these design factors contributes to the overall performance of a V pulley in terms of power transmission efficiency, belt grip, durability, and reliability. Manufacturers carefully consider these design aspects to ensure optimal performance and compatibility with specific applications and operating conditions.
How do V pulleys affect the performance of lawn and garden equipment?
V pulleys have a significant impact on the performance of lawn and garden equipment by providing power transmission and controlling the speed and torque of various components. Here’s a detailed explanation of how V pulleys affect the performance of lawn and garden equipment:
1. Drive System:
V pulleys are commonly used as part of the drive system in lawn and garden equipment. The driving pulley, often connected to the engine or motor, transfers rotational power to the driven pulley, which is connected to the equipment’s cutting blades, wheels, or other moving parts. The design and size of the V pulleys determine the speed and torque delivered to the equipment.
2. Speed Control:
V pulleys allow for speed control in lawn and garden equipment. By using pulleys of different sizes, the speed ratio between the engine or motor and the driven components can be adjusted. This enables the equipment operator to regulate the speed at which the blades rotate or the wheels turn, ensuring optimal performance for different tasks and terrain conditions.
3. Torque Transfer:
The design of V pulleys allows for efficient transfer of torque from the engine or motor to the driven components. The V-shaped groove in the pulleys, along with the corresponding V-belt, provides excellent grip and traction, preventing slippage and ensuring maximum power transfer. This enables the equipment to handle heavier loads, such as cutting through thick grass or tilling soil.
4. Belt Selection:
The selection of the appropriate V-belt is crucial for optimizing the performance of lawn and garden equipment. Different types of V-belts, such as classical V-belts or cogged V-belts, offer varying levels of flexibility, load capacity, and resistance to heat and wear. Choosing the right belt ensures efficient power transmission and extends the lifespan of the pulleys and belts.
5. Pulley Size and Design:
The size and design of V pulleys impact the performance of lawn and garden equipment. Larger pulleys can provide higher torque and slower blade or wheel speed, making them suitable for heavy-duty tasks. Smaller pulleys, on the other hand, allow for faster speed and lower torque, ideal for lighter cutting or moving applications. The groove profile and depth of the pulleys also play a role in belt engagement and grip, affecting power transmission efficiency.
6. Durability and Maintenance:
V pulleys used in lawn and garden equipment are typically constructed from durable materials such as steel or cast iron to withstand the demands of outdoor use, including exposure to moisture, debris, and vibrations. Regular maintenance, including inspection, cleaning, and occasional belt replacement, is necessary to ensure the continued performance and longevity of the V pulley system.
Overall, V pulleys significantly influence the performance of lawn and garden equipment by enabling efficient power transmission, speed control, and torque transfer. The selection of the right pulleys and belts, along with proper maintenance, ensures optimal performance, durability, and reliability of the equipment in various landscaping and gardening applications.
What is a V pulley, and how does it function in mechanical systems?
A V pulley, also known as a V-belt pulley or a sheave, is a mechanical component used in power transmission systems. Here’s an explanation of what a V pulley is and how it functions:
A V pulley is a pulley with a V-shaped groove on its outer circumference. It is typically made of metal, such as cast iron or steel, and is designed to work in conjunction with V-belts, which are flexible rubber belts with a trapezoidal cross-section. The V pulley and V-belt combination form a friction-based power transmission system.
Function:
The primary function of a V pulley is to transmit power between a driving source, such as an electric motor or an engine, and a driven component, such as a pump, a generator, or a machine. The V-belt wraps around the V pulley, fitting into the groove, and forms a frictional contact. When the driving source rotates the V pulley, the friction between the V-belt and the pulley enables the transfer of rotational motion and torque to the driven component.
Advantages:
1. Slip Reduction: The V-shaped groove on the pulley and the corresponding shape of the V-belt create a wedging action that enhances the grip between the pulley and the belt. This reduces the likelihood of slippage, even under heavy loads or during sudden changes in speed or direction.
2. High Torque Transmission: The design of the V pulley allows for the transmission of high levels of torque. The wedging action and increased contact area between the pulley and the belt enable efficient power transfer without excessive belt tension.
3. Speed Variation: By changing the diameter of the V pulley, different speed ratios can be achieved in the power transmission system. This provides flexibility in adjusting the speed of the driven component relative to the driving source, allowing for proper matching of operational requirements.
4. Damping Effect: The flexibility of the V-belt and the slight elasticity of the rubber material provide a damping effect, which helps mitigate vibrations and shocks in the mechanical system. This contributes to smoother operation, reduced noise, and increased component longevity.
5. Ease of Installation and Maintenance: V pulleys are relatively easy to install and maintain. The V-belts can be easily tensioned or replaced when necessary, and the pulleys can be readily mounted on shafts or bearings using standard mounting techniques.
Applications:
V pulleys find widespread use in various mechanical systems, including:
- Automotive applications, such as in engines, water pumps, and air conditioning compressors.
- Industrial machinery, such as conveyor systems, agricultural equipment, and machine tools.
- HVAC systems, where V pulleys are used in fans, blowers, and pumps.
- Power transmission systems in appliances, such as washing machines, dryers, and power tools.
By utilizing V pulleys in mechanical systems, efficient and reliable power transmission can be achieved, enabling the smooth operation of various devices and equipment.
editor by CX
2024-03-26