Product Description
MIC NO | OEM.NO | APPLICATION | YEAR | PHOTO |
TB34PG9301 | 957726 082990 9642929880 |
CITROEN BERLINGO / BERLINGO FIRST Box (M_) 1.1 i (MAHDZ, MBHDZ, MBHFX) CITROEN BERLINGO / BERLINGO FIRST Box (M_) 1.4 bivalent CITROEN BERLINGO / BERLINGO FIRST Box (M_) 1.4 i (MBKFX, MBKFW) CITROEN BERLINGO / BERLINGO FIRST Box (M_) 1.4 i bivalent (MBKFW) CITROEN BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.1 i (MFHDZ, MFHFX) CITROEN BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.4 bivalent CITROEN BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.4 i (MFKFX, MFKFW, GJKFWB, GJKFWC, GFKFWC) CITROEN BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.4 i bivalent (MFKFW) CITROEN C2 (JM_) 1.1 CITROEN C2 (JM_) 1.4 CITROEN C3 I (FC_, FN_) 1.1 i CITROEN C3 I (FC_, FN_) 1.4 i CITROEN C3 I (FC_, FN_) 1.4 i Bivalent CITROEN C3 II (SC_) 1.1 i CITROEN C3 II (SC_) 1.4 CITROEN C3 Pluriel (HB_) 1.4 CITROEN NEMO Box (AA_) 1.4 CITROEN NEMO Estate 1.4 CITROEN SAXO (S0, S1) 1.1 X,SX CITROEN XSARA (N1) 1.4 i CITROEN XSARA Break (N2) 1.4 i CITROEN XSARA Coupe (N0) 1.4 i FIAT FIORINO Box Body/Estate (225_) 1.4 (225BXA1A, 225BXF1A) FIAT QUBO (225_) 1.4 (225AXA1A) PEUGEOT 1007 (KM_) 1.4 PEUGEOT 106 II (1A_, 1C_) 1.1 i PEUGEOT 206 Hatchback (2A/C) 1.1 PEUGEOT 206 Hatchback (2A/C) 1.1 i PEUGEOT 206 Hatchback (2A/C) 1.4 i PEUGEOT 206 Hatchback (2A/C) 1.4 LPG PEUGEOT 206 Saloon 1.4 PEUGEOT 206 SW (2E/K) 1.1 PEUGEOT 206 SW (2E/K) 1.4 PEUGEOT 206+ (2L_, 2M_) 1.1 PEUGEOT 206+ (2L_, 2M_) 1.4 i PEUGEOT 207 (WA_, WC_) 1.4 PEUGEOT 207 SW (WK_) 1.4 PEUGEOT 306 (7B, N3, N5) 1.1 PEUGEOT 306 (7B, N3, N5) 1.4 SL PEUGEOT 306 Break (7E, N3, N5) 1.4 PEUGEOT 306 Hatchback (7A, 7C, N3, N5) 1.1 PEUGEOT 307 (3A/C) 1.4 PEUGEOT BIPPER (AA_) 1.4 PEUGEOT BIPPER Tepee 1.4 PEUGEOT PARTNER Box (5_, G_) 1.1 PEUGEOT PARTNER Box (5_, G_) 1.4 PEUGEOT PARTNER Box (5_, G_) 1.4 BiFuel PEUGEOT PARTNER Combispace (5_, G_) 1.1 PEUGEOT PARTNER Combispace (5_, G_) 1.4 |
1996-2008 2002-2011 1996-2011 2003-2005 1996-2008 2002-2011 1996-2011 2003-2008 2003-2012 2003-2009 2002- 2002-2571 2002- 2009-2013 2009-2016 2003- 2008- 2009- 1996-2003 1997-2005 1997-2005 1998-2005 2007- 2008- 2005- 1996-2004 1998-2000 1998-2007 1998-2012 2006-2007 2007- 2002- 2002-2007 2009-2013 2009-2013 2006-2013 2007-2012 1994-2001 1994-2001 1997-2002 1993-2001 2000-2003 2008- 2008- 1996-2005 1996-2015 2003-2006 1996-2002 1996-2015 |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online Technical Support |
---|---|
Warranty: | One year |
Car Make: | CITROEN |
Samples: |
US$ 15/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How do V pulleys handle different belt types and sizes?
V pulleys are designed to accommodate different belt types and sizes to ensure efficient power transmission. Here’s an explanation of how V pulleys handle variations in belt types and sizes:
1. Groove Profile:
The groove profile of a V pulley is specifically designed to match the shape of the V-belt used in the power transmission system. The angle, depth, and width of the groove are tailored to the corresponding V-belt dimensions. This ensures that the belt fits securely and engages properly with the pulley, creating the necessary friction for effective power transmission.
2. Belt Width:
V pulleys are available in different widths to accommodate belts of varying widths. The pulley width corresponds to the nominal width of the belt it is designed to work with. It is important to select a pulley with the appropriate width to ensure proper alignment and engagement of the belt.
3. Belt Type:
V pulleys can handle different types of V-belts, such as:
- Classical V-Belts: These are standard V-belts with a trapezoidal cross-section and are commonly used in various industrial applications.
- Narrow V-Belts: These belts have a narrower width and are used in applications where space is limited or higher speeds are required.
- Double V-Belts: Also known as hexagonal V-belts, these belts have a double-sided V-shaped cross-section and are designed to transmit power on both sides of the belt.
- Cogged V-Belts: These belts have notches or cogs on the inner surface, which allow for higher power transmission capacity and improved flexibility.
- Variable Speed V-Belts: These belts are designed to operate efficiently at varying speeds and provide a wide range of speed ratios.
- Synchronous Belts: These belts have teeth that mesh with corresponding grooves in the pulley, providing precise power transmission and eliminating slippage.
Each belt type has specific design characteristics, and V pulleys are manufactured to match the corresponding belt type for optimal performance.
4. Tensioning:
V pulleys are designed to work in conjunction with belt tensioning mechanisms to maintain the required tension in the belt. Tensioning devices such as idler pulleys or tensioners are used to adjust the tension and ensure proper belt engagement with the pulley.
5. Speed Ratio:
The pulley diameter ratio determines the speed ratio between the driving and driven pulleys in a belt drive system. By selecting pulleys of different diameters, different speed ratios can be achieved to suit the specific application requirements.
6. Compatibility:
It is essential to ensure compatibility between the V pulleys and the belts used in the system. This includes considering factors such as the pulley groove profile, belt width, belt type, and speed requirements. Manufacturers provide specifications and guidelines to help users select the appropriate pulleys for their specific belt types and sizes.
By considering these factors, V pulleys can effectively handle different belt types and sizes, providing reliable power transmission in various applications.
How do V pulleys affect the performance of lawn and garden equipment?
V pulleys have a significant impact on the performance of lawn and garden equipment by providing power transmission and controlling the speed and torque of various components. Here’s a detailed explanation of how V pulleys affect the performance of lawn and garden equipment:
1. Drive System:
V pulleys are commonly used as part of the drive system in lawn and garden equipment. The driving pulley, often connected to the engine or motor, transfers rotational power to the driven pulley, which is connected to the equipment’s cutting blades, wheels, or other moving parts. The design and size of the V pulleys determine the speed and torque delivered to the equipment.
2. Speed Control:
V pulleys allow for speed control in lawn and garden equipment. By using pulleys of different sizes, the speed ratio between the engine or motor and the driven components can be adjusted. This enables the equipment operator to regulate the speed at which the blades rotate or the wheels turn, ensuring optimal performance for different tasks and terrain conditions.
3. Torque Transfer:
The design of V pulleys allows for efficient transfer of torque from the engine or motor to the driven components. The V-shaped groove in the pulleys, along with the corresponding V-belt, provides excellent grip and traction, preventing slippage and ensuring maximum power transfer. This enables the equipment to handle heavier loads, such as cutting through thick grass or tilling soil.
4. Belt Selection:
The selection of the appropriate V-belt is crucial for optimizing the performance of lawn and garden equipment. Different types of V-belts, such as classical V-belts or cogged V-belts, offer varying levels of flexibility, load capacity, and resistance to heat and wear. Choosing the right belt ensures efficient power transmission and extends the lifespan of the pulleys and belts.
5. Pulley Size and Design:
The size and design of V pulleys impact the performance of lawn and garden equipment. Larger pulleys can provide higher torque and slower blade or wheel speed, making them suitable for heavy-duty tasks. Smaller pulleys, on the other hand, allow for faster speed and lower torque, ideal for lighter cutting or moving applications. The groove profile and depth of the pulleys also play a role in belt engagement and grip, affecting power transmission efficiency.
6. Durability and Maintenance:
V pulleys used in lawn and garden equipment are typically constructed from durable materials such as steel or cast iron to withstand the demands of outdoor use, including exposure to moisture, debris, and vibrations. Regular maintenance, including inspection, cleaning, and occasional belt replacement, is necessary to ensure the continued performance and longevity of the V pulley system.
Overall, V pulleys significantly influence the performance of lawn and garden equipment by enabling efficient power transmission, speed control, and torque transfer. The selection of the right pulleys and belts, along with proper maintenance, ensures optimal performance, durability, and reliability of the equipment in various landscaping and gardening applications.
In which industries are V pulleys commonly used?
V pulleys, also known as V-belt pulleys or sheaves, are commonly used in various industries due to their versatility and effectiveness in power transmission. Here’s an explanation of the industries where V pulleys are commonly employed:
1. Manufacturing and Industrial Sector:
The manufacturing and industrial sector extensively utilizes V pulleys in a wide range of applications. They are employed in machinery and equipment used in manufacturing processes, such as conveyor systems, pumps, compressors, machine tools, and packaging machines. V pulleys ensure efficient power transmission, enabling smooth operation and productivity in manufacturing facilities.
2. Automotive Industry:
V pulleys play a vital role in the automotive industry. They are used in various automotive systems, including engines, air conditioning systems, power steering systems, water pumps, and alternators. V pulleys in automotive applications ensure the proper functioning of essential components, contributing to the performance and reliability of vehicles.
3. HVAC and Refrigeration:
The HVAC (Heating, Ventilation, and Air Conditioning) and refrigeration industry heavily relies on V pulleys. They are employed in fans, blowers, and pumps used in HVAC systems, as well as in compressors and condenser units in refrigeration equipment. V pulleys facilitate efficient power transmission, enabling effective heating, cooling, and ventilation in residential, commercial, and industrial buildings.
4. Agriculture and Farming:
V pulleys are commonly used in the agriculture and farming industry. They are employed in agricultural machinery and equipment, such as tractors, combines, harvesters, and irrigation systems. V pulleys transfer power to various components, including pumps, augers, conveyors, and cutting mechanisms, ensuring efficient and reliable operation in farming operations.
5. Mining and Construction:
In the mining and construction industries, V pulleys find extensive use in heavy machinery and equipment. They are employed in excavators, bulldozers, cranes, loaders, and other mining and construction equipment. V pulleys facilitate power transmission to components such as hydraulic pumps, winches, and conveyor systems, ensuring reliable operation in demanding environments.
6. Power Generation:
V pulleys are utilized in power generation systems, including generators, turbines, and engines. They transfer power from the prime movers to the generators or other driven components. V pulleys in power generation applications contribute to the efficient conversion of energy and reliable electricity production.
7. Material Handling and Warehousing:
V pulleys are commonly employed in material handling and warehousing applications. They are used in conveyor systems, lifting equipment, and automated storage and retrieval systems. V pulleys enable the movement of materials and products, ensuring smooth and efficient logistics operations.
These are just a few examples of the industries where V pulleys are commonly used. Due to their versatility, reliability, and wide range of applications, V pulleys are employed in numerous industries and sectors that rely on efficient power transmission in their machinery and equipment.
editor by CX
2024-02-03