Product Description

Toyota Tensioner Pulley, timing belt

OEM:1662571090

REF NO.: APV2379 FEBI 27556 CHINAMFG 53357110 RUVILLE 56931 AUTEX 601584 IPD 1571 SWAG 81927556 TRISCAN 8641133   Application   TOYOTA

Place of CHINAMFG

ZHangZhoug, China

Material

   Aluminium   Product Name

Belt Tensioner

Reference NO.

 

Packing

Neutral Packing

SHIPPING TERM

Sea/Air

Quality

100%tested

Size

same as OEM

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Certification: CCC, ISO9001, TS16949
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

pulley

How does the design of a V pulley affect its performance?

The design of a V pulley plays a crucial role in determining its performance characteristics. Here’s an explanation of how different design aspects of a V pulley can affect its performance:

1. Groove Profile:

The groove profile of a V pulley is designed to match the shape of the V-belt used in the power transmission system. The angle and depth of the groove directly influence the grip between the pulley and the belt. An appropriate groove profile ensures a secure and efficient power transmission, minimizing belt slippage, and maximizing the transfer of torque.

2. Diameter:

The diameter of a V pulley affects both its speed ratio and torque transmission capacity. A larger pulley diameter results in higher belt speed and lower torque transmission, while a smaller diameter pulley provides lower speed and higher torque. The selection of the pulley diameter depends on the desired speed and torque requirements of the application.

3. Material:

The material used for constructing the V pulley impacts its durability, strength, and resistance to wear and corrosion. Common materials include cast iron, steel, aluminum, and plastic. The choice of material depends on factors such as the application environment, load capacity, and operating conditions. A robust and appropriate material selection ensures the pulley can withstand the demands of the application and maintain its performance over time.

4. Balance and Runout:

A well-balanced V pulley is essential to minimize vibration and ensure smooth operation. Imbalances can lead to increased wear on the pulley, belt, and bearings, reducing the overall efficiency and lifespan of the system. Similarly, excessive runout (eccentricity) in the pulley’s rotational movement can cause belt misalignment and increased friction. Proper design and manufacturing techniques are necessary to achieve optimal balance and runout in V pulleys.

5. Taper and Flange:

In some V pulley designs, a taper or flange is incorporated to improve belt tracking and prevent belt wandering or jumping off the pulley. The taper or flange helps guide the belt and maintain proper alignment, enhancing the overall performance and reliability of the power transmission system.

6. Hub Design:

The hub design of a V pulley determines its attachment method to the shaft. It can feature keyways, set screws, or other mechanisms to securely fasten the pulley in place. The hub design should ensure a tight and reliable connection to prevent pulley slippage and maintain accurate power transmission.

7. Surface Finish:

The surface finish of a V pulley can impact its friction characteristics. A smooth and properly finished surface reduces friction between the pulley and the belt, promoting efficient power transmission and minimizing heat generation. Additionally, surface treatments such as coatings or platings can improve the pulley’s resistance to corrosion and wear.

Each of these design factors contributes to the overall performance of a V pulley in terms of power transmission efficiency, belt grip, durability, and reliability. Manufacturers carefully consider these design aspects to ensure optimal performance and compatibility with specific applications and operating conditions.

pulley

Can V pulleys be used in both simple and complex mechanical systems?

Yes, V pulleys can be used in both simple and complex mechanical systems. Their versatility and effectiveness make them suitable for a wide range of applications. Here’s a detailed explanation:

1. Simple Mechanical Systems:

In simple mechanical systems, V pulleys are often used in basic power transmission setups. These systems typically involve a single driving pulley connected to a driven pulley by a V-belt. The simplicity of the setup allows for easy installation and maintenance.

Simple mechanical systems utilizing V pulleys are commonly found in applications such as:

  • Small machinery and equipment
  • Home appliances
  • Power tools
  • Fans and blowers
  • Pumps

2. Complex Mechanical Systems:

V pulleys are also employed in complex mechanical systems where multiple pulleys, belts, and components are interconnected. These systems require precise power transmission, synchronization, or speed control.

Complex mechanical systems that utilize V pulleys can be found in various industries, including:

  • Automotive: V pulleys are used in engines, transmission systems, and accessory drives.
  • Manufacturing: V pulleys are found in conveyor systems, industrial machinery, and production equipment.
  • Agriculture: V pulleys are used in tractors, harvesters, and irrigation systems.
  • Mining: V pulleys are employed in conveyor belts for material handling.
  • Construction: V pulleys are used in construction machinery and equipment.
  • HVAC (Heating, Ventilation, and Air Conditioning): V pulleys are utilized in air handling units, fans, and compressors.

3. Advantages in Both Simple and Complex Systems:

V pulleys offer several advantages that make them suitable for both simple and complex mechanical systems:

  • Cost-Effective: V pulleys are generally affordable and provide efficient power transmission at a lower cost compared to other drive systems.
  • Wide Range of Speed Ratios: By using pulleys of different sizes, V-belt drive systems can achieve a wide range of speed ratios to meet specific application requirements.
  • Shock Absorption: The elasticity of V-belts allows them to absorb shock and vibration, reducing stress on the pulleys and other components.
  • Quiet Operation: V-belt drive systems produce less noise compared to direct drives, making them suitable for applications where noise reduction is desired.
  • Easy Installation and Maintenance: V pulleys are relatively simple to install and maintain, making them accessible for various users and applications.

Overall, the versatility, reliability, and cost-effectiveness of V pulleys make them viable options for both simple and complex mechanical systems, providing efficient power transmission in a wide range of applications.

pulley

What are the primary components and design features of a V pulley?

A V pulley, also known as a V-belt pulley or sheave, consists of several primary components and design features that enable its functionality. Here’s an explanation of the primary components and design features of a V pulley:

1. Body:

The body of a V pulley is the main structural component. It is typically made of metal, such as cast iron or steel, to provide strength and durability. The body is designed to support the V-belt and transmit power from the driving source to the driven component. It may have a solid construction or be split into two halves for easy installation or replacement.

2. Groove:

The groove is a key design feature of a V pulley. It is a V-shaped channel or groove that runs along the outer circumference of the pulley. The groove is specifically designed to accommodate the V-belt with a corresponding trapezoidal cross-section. The V shape of the groove enhances the grip between the pulley and the belt, ensuring efficient power transmission and reducing the risk of slippage.

3. Diameter:

The diameter of a V pulley refers to the distance across its outer circumference. It plays a crucial role in determining the speed ratio and torque transmission of the power transmission system. By changing the diameter of the pulley, different speed ratios can be achieved between the driving source and the driven component. Larger pulley diameters generally result in higher belt speeds and lower torque, while smaller diameters lead to slower belt speeds and higher torque.

4. Number of Grooves:

V pulleys can have a single groove or multiple grooves, depending on the specific application. The number of grooves corresponds to the number of V-belts used in the power transmission system. Multiple grooves allow for the simultaneous power transmission to multiple driven components, such as in systems with multiple accessories or pulleys in automotive engines.

5. Tapered or Straight Design:

V pulleys can have a tapered or straight design, depending on the requirements of the application. Tapered pulleys are wider at one end and narrower at the other, allowing for easier belt installation and improved belt tracking. Straight pulleys have a consistent width along their entire circumference and are commonly used in applications where belt tracking is not a significant concern.

6. Surface Finish:

The surface finish of a V pulley is important for optimizing the performance and lifespan of the V-belt. The pulley’s surface should be smooth and free from any roughness or irregularities that could cause excessive belt wear or damage. Proper surface finish ensures proper belt contact, reduces friction, and enhances the overall efficiency of the power transmission system.

7. Mounting Mechanism:

V pulleys are mounted on shafts or bearings using various mounting mechanisms, such as set screws, bolts, or keyways. The mounting mechanism ensures secure and reliable attachment of the pulley to the rotating shaft, allowing for the transmission of rotational motion and torque.

By considering these primary components and design features, engineers can select and design V pulleys that are suitable for specific applications, ensuring efficient power transmission and reliable operation in mechanical systems.

China Professional for CZPT 1662028011 1662028090 Tensioner Pulley, Timing Belt   idler pulley	China Professional for CZPT 1662028011 1662028090 Tensioner Pulley, Timing Belt   idler pulley
editor by CX

2024-04-25